A morphometric analysis of Torpedo synaptic vesicles isolated by iso-osmotic sucrose gradient separation.

نویسندگان

  • G Q Fox
  • D Kötting
  • G H Dowe
چکیده

The presynaptic terminal vesicle population of Torpedo electric organ is heterogeneous in size, consisting of two prominent subpopulations that comprise 80% of the total. The use of standard iso-osmotic sucrose gradients with zonal centrifugation to isolate vesicle fractions that co-localize with the acetylcholine (ACh) peak results in the recovery of: (1) 10% of the total estimated vesicle population; and (2) a single 68-nm diameter vesicle size class. The whereabouts of the major 90-nm subclass, which accounts for 60% of the total terminal population and which has long been considered to represent the resident ACh population, has been investigated. Assuming this subclass to have undergone severe osmotic stress, the effects of hypo- and hyper-osmotic salines, buffers and fixatives were examined and found to produce only negligible changes on vesicle size. Isolation of vesicles by hypo-osmotic shocking of synaptosomes purified on a Ficoll gradient, however, resulted in a reasonable approximation of the in situ distribution. As the iso-osmotic sucrose gradient procedure utilizes frozen blocks of electric tissue, this step is suspected of being involved in the loss, perhaps because of the slow freezing rates employed. These findings indicate that the 90 nm subclass is lost rather than transformed during isolation by sucrose gradient separation and that dimensionally, the cholinergic vesicle is a constant-sized and relatively stable structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A morphometric analysis of isolated Torpedo electric organ synaptic vesicles following stimulation.

The electric organ of Torpedo has been stimulated with 1800 pulses at 0.1 Hz to produce biochemical and morphological heterogeneity of its synaptic vesicle population. This was verified by biochemical and morphometric analyses of the synaptic vesicle population isolated by sucrose density gradient zonal separation following stimulation. Biochemical or metabolic heterogeneity was verified using ...

متن کامل

Exchangeability of radioactive acetylcholine with the bound acetylcholine of synaptosomes and synaptic vesicles.

1. The exchangeability with added radioactive acetylcholine of the acetylcholine in isolated presynaptic nerve terminals (synaptosomes) and isolated synaptic vesicles was studied by a Sephadex-column method. 2. A substantial proportion of the synaptosomal acetylcholine is exchangeable with added radioactive acetylcholine. It is liberated by hypo-osmotic shock and ultrasonic treatment, and behav...

متن کامل

Synapsin I is associated with cholinergic nerve terminals in the electric organs of Torpedo, Electrophorus, and Malapterurus and copurifies with Torpedo synaptic vesicles.

Using an affinity-purified monospecific polyclonal antibody against bovine brain synapsin I, the distribution of antigenically related proteins was investigated in the electric organs of the three strongly electric fish Torpedo marmorata, Electrophorus electricus, Malapterurus electricus and in the rat diaphragm. On application of indirect fluorescein isothiocyanate-immunofluorescence and using...

متن کامل

Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals.

The metabolic heterogeneity of synaptic vesicles in the cholinergic nerve terminals of the electromotor neurons of Torpedo marmorata has been studied in resting tissue by evaluating the molecular acetylcholine content (MAC) of synaptic vesicles after extraction from frozen and crushed tissue and high-resolution centrifugal density gradient separation in a zonal rotor. Although vesicular acetylc...

متن کامل

Preparation of synaptosomes, neuromelanin granules and synaptic vesicles

1. Synaptosomes Kiebler et al [1] was the first group to describe the use of a discontinuous iodixanol gradient in the isolation of dendritic spines from mouse hippocampus. The gradient comprised four layers of 9%, 12.5%, 15% and 25% (w/v) iodixanol (equivalent to densities of 1.076, 1.095, 1.105 and 1.152 g/ml); the densest solution contained the material pelleted from the hippocampal homogena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 498 2  شماره 

صفحات  -

تاریخ انتشار 1989